首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4550篇
  免费   882篇
  国内免费   453篇
化学   3179篇
晶体学   43篇
力学   302篇
综合类   71篇
数学   523篇
物理学   1767篇
  2024年   8篇
  2023年   119篇
  2022年   132篇
  2021年   198篇
  2020年   244篇
  2019年   221篇
  2018年   193篇
  2017年   149篇
  2016年   246篇
  2015年   240篇
  2014年   296篇
  2013年   380篇
  2012年   420篇
  2011年   391篇
  2010年   299篇
  2009年   228篇
  2008年   272篇
  2007年   262篇
  2006年   215篇
  2005年   183篇
  2004年   124篇
  2003年   118篇
  2002年   100篇
  2001年   92篇
  2000年   91篇
  1999年   119篇
  1998年   76篇
  1997年   86篇
  1996年   72篇
  1995年   68篇
  1994年   51篇
  1993年   52篇
  1992年   31篇
  1991年   27篇
  1990年   23篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   16篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1971年   2篇
  1959年   4篇
  1957年   3篇
排序方式: 共有5885条查询结果,搜索用时 187 毫秒
81.
色谱是一门以分离分析为主,旨在追求复杂事物纯而净的分析化学的重要分支学科。其经过百余年的发展,理论与技术日臻完善,集科学、技术与艺术于一体。近年来,色谱及其与质谱、核磁共振波谱、原子发射光谱等联用技术极大推动了环境、食品、石油化工、生物医药等领域中所涉及复杂体系的研究进展。作为我国传统文化的核心代表,中医药为中国乃至世界人民的健康服务逾千年,从古至今历经上千年临床考验,疗效经久不衰。近年来,中国政府强调继承与创新,加大推进中医药的现代化与国际化。然而中药自身的多成分协同起效复杂性及其与机体时刻新陈代谢变化的复杂性往往相互作用,由此形成了药物-机体复杂巨系统。该复杂巨系统的分析研究是中医药现代化进程的关键瓶颈。色谱的优势在于复杂成分的分离与分析,此恰能为上述复杂巨系统提供技术支撑,色谱及其联用技术已成为推动中医药分子化、数字化、信息化乃至现代化的主流技术。该文综述了色谱及其联用技术在中药复杂体系、复杂生命过程及药物-机体复杂巨系统中的应用进展,介绍了笔者研究团队对中医药现代化的认识、研究思路和研究工作,最后笔者结合对于百年色谱与千年中医药文化之现代化交织的感悟,对色谱技术在此领域的前景做出了展望。  相似文献   
82.
Intestinal barrier dysfunction is an essential pathological change in inflammatory bowel disease (IBD). The mucus layer and the intestinal epithelial tight junction act together to maintain barrier integrity. Studies showed that chitosan oligosaccharide (COS) had a positive effect on gut health, effectively protecting the intestinal barrier in IBD. However, these studies usually focused on its impact on the intestinal epithelial tight junction. The influence of COS on the intestinal mucus layer is still poorly understood. In this study, we explored the effect of COS on intestinal mucus in vitro using human colonic mucus-secreted HT-29 cells. COS relieved DSS (dextran sulfate sodium)-induced mucus defects. Additionally, the structural characteristics of COS greatly influenced this activity. Finally, we evaluated the protective effect of COS on intestinal barrier function in mice with DSS-induced colitis. The results indicated that COS could manipulate intestinal mucus production, which likely contributed to its intestinal protective effects.  相似文献   
83.
The traditional aqueous route to synthesis CdTe/CdS Core/shell (c/s) quantum dots (QDs) via decomposition of Cd-thiol complexes is usually time consuming. Herein, an ultrafast and facile aqueous synthetic approach under atmospheric pressure for CdTe/CdS c/s QDs with emission from the green to the near-infrared window (535–820 nm) is reported. With purified CdTe core QDs diluted in solution of Cd-3-mercaptopropionic acid (MPA) complexes, CdTe/CdS c/s QDs with emission wavelengths at 700 and 800 nm can be obtained within 20- and 45-min refluxing under the optimized experimental conditions, respectively. This is the most rapid way to prepare CdTe/CdS c/s QDs in aqueous phase, and the obtained QDs were highly luminescent without postsynthesis treatment. The influences of various experimental factors, including Cd2+ concentration, MPA-to-Cd ratio, pH value, and dilution ratio on the growth rate and luminescent properties of the obtained CdTe/CdS c/s QDs, have been taken into consideration. The three processes “purification-dilution-addition” ensure the synthesis environment with high pH value and low core concentration and have a marked impact on the rapid synthesis rate and the resulting high fluorescence of CdTe/CdS c/s QDs.  相似文献   
84.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   
85.
Two patterns of signal amplification lateral flow immunoassay (LFIA), which used anti-mouse secondary antibody-linked gold nanoparticle (AuNP) for dual AuNP-LFIA were developed. Escherichia coli O157:H7 was selected as the model analyte. In the signal amplification direct LFIA method, anti-mouse secondary antibody-linked AuNP (anti-mouse-Ab-AuNP) was mixed with sample solution in an ELISA well, after which it was added to LFIA, which already contained anti-E. coli O157:H7 monoclonal antibody-AuNP (anti-E. coli O157:H7-mAb-AuNP) dispersed in the conjugate pad. Polyclonal antibody was the test line, and anti-mouse secondary antibody was the control line in nitrocellulose (NC) membrane. In the signal amplification indirect LFIA method, anti-mouse-Ab-AuNP was mixed with sample solution and anti-E. coli O157:H7-mAb-AuNP complex in ELISA well, creating a dual AuNP complex. This complex was added to LFIA, which had a polyclonal antibody as the test line and secondary antibody as the control line in NC membrane. The detection sensitivity of both LFIAs improved 100-fold and reached 1.14 × 103 CFU mL−1. The 28 nm and 45 nm AuNPs were demonstrated to be the optimal dual AuNP pairs. Signal amplification LFIA was perfectly applied to the detection of milk samples with E. coli O157:H7 via naked eye observation.  相似文献   
86.
One new lactone, cyclopentanepyrone A ( 1 ), and two new monoterpenoids, gardeterpenone A ( 2 ) and jasminoside V ( 3 ), were isolated from the fruits of Gardenia jasminoides var. radicans, along with four known monoterpenoids, 4 – 7 , which were isolated from this plant for the first time. The structures of the isolates were elucidated by extensive spectroscopic studies, including UV, IR, 1D‐ and 2D‐NMR, ESI‐MS, HR‐ESI‐MS, and CD experiments.  相似文献   
87.
Yu  Ningxiang  Peng  Hailong  Xiong  Hua  Wu  Xiaqing  Wang  Xiaoyan  Li  Yanbin  Chen  Lingxin 《Mikrochimica acta》2015,182(13):2139-2146

A fluorescent probe for the sensitive and selective determination of sulfide ions is presented. It is based on the use of graphene quantum dots (GQDs) which emit strong and stable blue fluorescence even at high ionic strength. Copper(II) ions cause aggregation of the GQDs and thereby quench fluorescence. The GQDs-Cu(II) aggregates can be dissociated by adding sulfide ions, and this results in fluorescence turn on. The change of fluorescence intensity is proportional to the concentration of sulfide ions. Under optimal conditions, the increase in fluorescence intensity on addition of sulfide ions is linearly related (r 2 = 0.9943) to the concentration of sulfide ions in the range from 0.20 to 20 μM, and the limit of detection is 0.10 μM (at 3 σ/s). The fluorescent probe is highly selective for sulfide ions over some potentially interfering ions. The method was successfully applied to the determination of sulfide ions in real water samples and gave recoveries between 103.0 and 113.0 %.

Graphene quantum dots (GQDs) emit strong blue fluorescence which, however, is quenched by copper(II) ions due to the formation of GQDs-Cu(II) aggregates. Fluorescence is recovered by sulfide ions due to the dissociation of GQDs-Cu(II) aggregates.

  相似文献   
88.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   
89.
A base‐promoted three‐component coupling of carbon dioxide, amines, and N‐tosylhydrazones has been developed. The reaction is suggested to proceed via a carbocation intermediate and constitutes an efficient and versatile approach for the synthesis of a wide range of organic carbamates. The advantages of this method include the use of readily available substrates, excellent functional group tolerance, wide substrate scope, and a facile work‐up procedure.  相似文献   
90.
Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification‐induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core–shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar‐driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell–material complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号